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ABSTRACT 

For a "generic" submanifold S of a complex manifold X, we show that 

there exists a hypersurface M D S which has the same number of neg- 

ative (or positive) Levi-eigenvalues as S at one prescribed conormal (cf. 

also [9]). When rankL S is constant, then M may be found such that LM 

and LS have the same number of negative eigenvalues at any common 

conormal. Assuming the existence of a hypersurface M with the above 

property, we then discuss the link between complex submanifolds of S 

whose tangent plane belongs to the null-space of the Levi-form Ls of S (of 

all complex submanifolds when Ls is semi-definite), and complex subman- 

ifolds of T}X. As an application we give a simple result on propagation 

of microanalyticity for CR-hyperfunctions along complex, Ls-null, curves 

(cf. [3]). 

Let X be a complex manifold of dimension n, S a real C2-submanifold of X of 

codimension l, T * X  the cotangent bundle to X,  T~X the conormal bundle to S 

in X. Let Ls (p ) ,p  6 ~b~X(= T~X  \{0}), be the Levi form of S with respect to p 

(cf. [5]), and denote by +,-,o s s (p) the numbers of respectively positive, negative, 

and null eigenvalues of Ls(p).  

THEOREM 1: Assume that S is generic (i.e. T S  + x/-Z-fTS = T X ) ,  and fix 

Po E :F~X. Then there exists a hypersurfaee M such that M D S, T ~ X  9 Po, 

and moreover 

(1) sM(Po) = s-~(po). 
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Proof" We choose local coordinates (z, ~) E T ' X ,  and, for Po = (Wo; (o), suppose 

Co real. We write I I~ll = ( ~ i  ~ )  �89 (for the determination of the square root which 

is positive for real ~), fix t E N+, and define a contact transformation X = Xt by: 

_ r 
X: (z;() ~ (z  t ~-~; ( )  

(where we suppose e.g. ~ i  (2 • N- ). We have, for a hypersurface S C X, 

(2) x(T~X) = T~x. 

We shall use the notations T C s  = T S  n VC--1TS, )~s = T T ~ X  and similarly for 

S. Since 

K e r L s  ~ ~s n x/-21)~s -% )~ n x/C-1)~ -% Ker L~, 
7r  I X I 7r  I 

and since dim(TCS) = dim(TCS) + (l - 1), then rank(L~) = rank(Ls) + (I - 1). 

It follows, for t small enough, that 

(3) s~(q)  = s~(p)  + (l - 1) (q = )/(p)). 

We note that we have an identification ~h~X Z~ X \ S given by 

(w;r H w -  Ir II~ll' 

provided that z is close to S and Ir is small. We denote by h the projection 

X ~ S, z ~ w. We also remark that we have 

~S n x/-L-I~s = {(u;v): v = v(u) = OOru - OOru with u E Ker Ls}, 

and similarly for A# n v/L--fA#. Write Po = (Wo; (o), qo( = X(Po)) = (zo; (o) with 

(o E R '~, I(ol = 1. Let us define a linear transformation on C ~ by 

�9 ,: u ~ ~ - t ( ~ ( ~ )  - r162  v ( ~ ) ) ) .  

The correspondence X~(Po): ~S(po) n x / ~ S ( p o )  -* A#(qo) n v/-A-f)~$(qo) induces 

a correspondence (I)t: K e r L s ( w o )  -%, KerL#(zo) .  We denote by g: T~oX -~ S the 

projection along the normal to S at zo, and write R -- g(Ot(T~oS)).  We have 

TC R D Ker L~(zo),  T~oR -= ~t (TwoS) .  
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Thus we may find a decomposition TCo S = TCo R @ 1V such that 

(4) L~(zo)(fi, v) = 0 Vu e TCoR, Vv e N. 

We take now a hypersurface M which intersects S along R with order of contact 

2 and with the property that, if ~/+ and S+ are the closed half-spaces with 

boundary/~/, S and inward conormal qo, then/1:/+ c S+. This implies 

X-I(TM X) = T ~ X  for a hypersurface M D S. (~) 

We have 

(6) L~(zo)(~t,v) = 0 Vu E TCR, Vv e IV. 

This follows immediately from (4) if we notice that, since /Y/A S = R, and 

T ~ X I .  = T ~ x L . ,  then  

L~(z)(~,.)ITC~ = n~(z)(~,.)lvc~ Vz e R. 

We also notice that Li~l(Z)lTC R = L3(Z)lTC R ,~ Ls(z) (for small t), and that, 

if T~Xzo is identified with a totally real plane N' C TzoX (by the Euclidean 

structure of T~oXS), then 

L~(zo)(~,v) < -ct- l lvl  2 Vv e g '  | x/%~N '. 

Note also that in the decomposition T~ S = T c R |  which gives rise to (6), 

]V can be taken close to N' | x/~YN ' (for t small). It follows that 

(7) ~-~(zo) = s~(po) + (l - 1), ~ ( Z o )  = ~s+(po). 

(Here ~/being a hypersurface, we write SM+(Zo ) instead of s-~+(po).) On the 

other hand, from 

-~ A M [-1 V/-~/~M -~ Ker LM, Ker L~/~,  A M n x/~L~s215 ~, 

we get 
s ~ ( p o )  = s-~(Zo) - (l - 1) = 8~(po) ,  

8+.(po) = ~+~(Zo) + (l - 1) = ~ ( p o )  + (t - 1). 

Note that (1) entails 

(8) Ker Ls(po) C Ker LM(Po). 
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Remark 2: Let s~ (p) -- b for any p in a neighborhood of Po on 2b}X. We tried 

to prove the existence of a hypersurface M containing S and verifying s M (p) ~ b 

Yp E T ~ X  (in particular the existence of M pseudoconvex in case ss(P ) -- 0 Yp). 

But we do not know the answer to this question yet. 

THEOREM 3: Let S be generic of class C 3 and rankLs(p) - eonst Vp E 7~X at 

Po. Then there exists M D S such that 

(9) sM(P) = ss(Po ) Vp E S XM T ~ X .  

Proof." We transform x ( T ~ X )  = T s X  with X = ~t, S = St as in Theorem 1. 

Our hypothesis is then equivalent to assuming that L~(z) has constant rank Yz. 

Thus each S = St is foliated by the complex integral leaves of Ker L~. (For this 

we require S of class C3.) It follows that X \ S itself is foliated by the integral 

leaves of KerLg for all values of the parameter t. We replace R = g(~t(T~oS))  

by f - i f ( R )  where f:  S ~ L (L C S transversal to KerLg(zo))  is the projection 

along the integral leaves of Ker L~. We still have 

TzCR D KerL~(z) Yz E It(. 

Then the line of the proof is the same as in Theorem 1. I 

Remark 4: Assume that there exists a hypersurface M which contains S and 

such that  

(10) KerLs(p)  C KerLM(p)  Yp E S XM T ~ X ,  p close to Po. 

(As we have already noticed in (8), this happens e.g. when SM(P ) -- Ss(p)Vp. ) 

Then for any equation r = 0 for M and for any complex 7 C S such that 

T~7 C Ker Ls(p)Yp = Or(z), Vz E 7, we have 

Or 7 is complex. 
Oqz~ r 

To prove this, we let Po = (1, 0 , . . . ,  0), take an orthonormal system (el) in C n, 

n C_,e J = Ozlrej -- O~jrei. Then for any fixed j ,  assume 7 = (~i=~-d+l i, and put w i 

(w~)~=~ ..... ,~,~#j is a basis for TzCM. It follows, Vh _> n - d + 1, that 

( Oz,  = - (Oz  r) 
(11) O~h \O,  z r /  

= (OOr(w~, eh)) (Ozlr) -2 = O. 

The above remark has a valuable improvement: 
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THEOREM 5: Let S be generic, assume (10), and also suppose 

(12) s~(p) = const Vp e T~X at Po. 

Let "y be a complex submanifold of S such that 

(13) Tz~/C KerLs(p)  Vz E % Vp r (T~X);  at Po. 

Then there exists a unique r, with rls =_ 0, Or(Zo) = Po such that Orl3 is complex. 

Proo~ Existence: According to [6] it is possible to interchange T ~ X  with 

T~vX , codimN = 1, sN(qo ) = O(qo = X(Po)) by a contact transformation X. Such 

a X can be defined by 

, x / ~  v"~n-- 1 /~ r 
Zl e-~ Z l - ~  ~ / - - 1 2 . ~ j =  1 l j  (--~, 

( 1 4 )  x :  . . . . . .  ' x 
Zn ~ Zn -- 2 A-.,ij=l . , i j  ~2 ' 

for suitable (Aij). But in fact we have s~v(z ) - 0 Vz E N because the constancy 

of s -  is invariant under contact transformation (cf. [4, ch. l iD; thus N is the 

boundary of a pseudoconvex domain (with outward conormal qo). Let M be a 

hypersurface which contains S and satisfies (10), let r = 0 be an equation for M 

with Or(zo) = Po, and define ~ = ~rx(0rl.y); we claim that ~ is complex. In fact 

(11) holds as a consequence of (10). Moreover we have 

Ozi rOz~ r 

-2(O~,O=,r)(Oz,r)(O~jr)) (0=,r) -3 

= ((OOr(w~,gh))(Ozjr) + (OOr(wJ,gh))(Oz,r)) (Ozlr) -3 

~0~ 

due to (10) and (13). At this point we apply [1] (with some minor modifications 

because now dim(7) is possibly > 1) and find a complex section tOr[# C T~vX. 

UNICITY: Let Or verify OOr17 - O, Or(Zo) = 0; we aim to prove that Orl7 = O. 

It is not restrictive to assume that 7 is a disc in the complex Cz~-plane. Let 

r l  = 0, r2 = 0 . . . .  , rt = 0 (l = codim(S)), be a system of independent equations 
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for S, let (ai)l<i<l be a real vector-valued function such that Or = ~ i  aiOri, and 

choose coordinates such that the matrix A: ~f  (O~rd)l<i,j<_ ~ is non-degenerate. 

Then (ai) satisfies 

[ Oz~(ai)[.~ = (ai) ((O~A)A-')I .  ~ , 

(15) aso (ai)J  , 

(ai)(Zo) = O. 

Then by the unicity of the solution to (15) we get (ai) = O. | 

Any section 7" of T~X with 1r7" = 7 (such as Orl, ) is called a lift of 7 to 

T~X. Thus if (10), (12) hold, then any complex manifold 7 C S which satisfies 

(13) has a unique complex lift 7" in S XM T h X .  Note that, since 

7r t 

(16) TpcT~X -% Ker Ls(p), 

then (13) is necessary for existence of a lift through any p close to Po. 

COROLLARY 6: Let S be generic and assume 

(17) rankLs(p) =- const Vp E ~i'~X in a neighborhood Of po. 

Let 7 be a complex submanifold of S which satisfies (13). Then there e.xists 

unique complex submanifold "y* C ~i"~X with ~r-y* = % 7* ~ po. 

Proo~ According to Theorem 3, (10) is satisfied for a suitable M. In our 

hypothesis (s + - const), (12) is also satisfied. Then Theorem 5 applies. | 

Note that  when (17) holds, then the existence of a lift can be proved in an easier 
x 

way than by Theorem 5. In fact let us interchange T~X ~ T~v X,  codimN = 1, 

s~ = 0 by a symplectic complex homogeneous transformation X of type (14). 

Thus N is a peudoconvex hypersurface with rankLN = const. But then N is 

foliated by the integral leaves {F} of Ker LN. We then apply [1] and find a 

foliation {F*} of T~vX with 7r(F*) = F. This induces, via ~(-1 and 7r o ~-1, a 

foliation {F*} and {F} of T~X and S, respectively. We note now that if F~ is the 

leaf through p, and Fz(z = 7r(p)) its projection, then (13) implies 7 c Fz. Thus 

if we set 
7 " :  d e f  ~ ,  : l'p 7, 

we get a complex lift of 7 to ~b~X. 
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Remark  7: If in Theorem 5 we assume s~ = 0 instead of (12), we do not need to 

make the assumption T~7 C K e r L s ( p ) ( z  = 7c(p))Vp. In fact if u belongs to T~7, 

then Ls(p)(u ,  ft) : O,p E T ~ X , u  E T~/.  Therefore when Ls(p)  is semidefinite, 

we get Ls(p)( ' ,  ~t)]TC S = O. 

Remark 8: For the sake of completeness we give the outline of the proof of the 

quoted result by [1] with the suitable modifications. We assume ~ = {0} • . . .  • 

cd,, C N with N pseudoconvex, take an equation s = 0 for N with Os = qo 

J = Oz sej - Ozj sei. We then have ( : ) ( (po) ) ,  and write u : eh(E TZJ,w~ 

which implies 

L~(z)(w, ft) = 0 Yw E TC~N, Yz E ~, 

(18) O~ h kOz lS )  ( z ) -  (Oz~s(z))2 - 0 Vz E zy. 

We claim that  we can then find a real function tt = #(z")  such that 

(19) 0 ~  ((Oz,(et's)l~) = 0 Yh. 

If this is true, then by setting @* = {(z; e~(Z)Os(z)); z E ~}, we get the conclusion. 

Let qo = (0; dyl),  and write 

s : y ,  - xla( ", + + o ( l ( x l ,  z 2 , . . . ,  

It is immediate to check that  the system (19) for real # is equivalent to the system 

(20) (0~h~ + ( 0 ~ a ) / ( a  + v ~ )  : 0, 0~hp + (Oz~a)/(a - Z C f )  : 0), 

for complex #. Now the compatibility conditions of (20) are 

0 2 h ~ a ( l + a  2 ) - 2 a 0 ~ h a 0 ~ k a : 0  Vh, k : n - d +  l . . . .  ,n.  

On the other hand, we have 

If we compute L~(w~,e~) in S for z2 . . . . .  z,~-d = 0, we get 

L~(w~, (v~) = x l  (02h~ a(1 + a 2) - 2aOz,aO~a) + O(Ix112). 

Thus the coefficient of xl  must be 0 because otherwise, for some 

w E Vect{w~}h=n-d+l ..... n, L~(w, ~)  would change sign on N. 
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Example 9: If we choose M D S such that LM(P)]TCS >_ 0 (i.e. s-~(p) = O) 

VR E S X M T~/X but LM(p) ~ 0, then for a complex curve 7 in S we might have 

no wish to find a complex lift 7* in 5b~X. For example, let us consider in C 3 

S =  {Xl----0, y3----2yly2}, M - -  {Y3---z122+51z2}, Po-- (0;dy3). 

Then TzCS = Cu where u = (0, 1, 2Imzl) and therefore Ls(p) -= OVp E T~X. On 

the other hand, S contains the complex curve 7 = {0} • Cz2 x {0} but T~X 

cannot contain any complex 7*. Otherwise this latter would satisfy 

TT* C T~i'~X M xfA-1TT~X(~, Ker LM) = 0, 

which is a contradiction. 

Corollary 6 says, however, that we can choose another M with any prescribed 

conormal at Zo = 0, so that a complex lift to T~X always exists. For example, 

with the preceding S and Po a good choice for M is 

M = {z; y3 + (z lz2  + = 0}.  

Let Cslx and 13SlX be the complexes of respectively CR microfunctions and 

CR hyperfunctions along S. We recall that 13SlX is defined as RFs(Ox)[l] (where 

l = codimx M and Ox is the sheaf of holomorphic functions). When S is real 

analytic, 13six turns out to coincide with the tangential 0-complex over usual 

hyperfunctions BslsC (S c = a complexification of S). Let sp: H~ -* 

H~ be the spectral morphism, and define 

WF(f)  = supp(sp(f)), f E H~ 

WF coincides with the usual analytic wave front set in the sense e.g. of [5]. 

The conormal along S to the hypersurface M which satisfies (10) describes 

the connection of T~X in which the propagation of microanalyticity of CR- 

hyperfunctions takes place. 

PROPOSITION 10: Let S be generic and satisfy (10),(12), let 7 be a complex 

curve of S, po a point of T~X with ~r(po) = Zo E 7, and suppose that T~7 C 

Ker Ls(p)Vp E (T~X)~. Then there exists a section Or[~ of T~X with Or(zo) -~ 

po, such that 

Po q~ WF(f)zo implies Or(z) ~ WF(f)~ Vf E H~ 
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Proof: We choose an equation r = 0 for M, and consider the symplectic trans- 

formation X of Theorem 5. Then rx(Orl7 ) is a complex curve in the hypersurface 

N, the boundary of a pseudoconvex domain. According to [4], the sections of 

Cslx are interchanged, by a quantization (I) u of X, with 7/~v + (Ox)  where N + is 

the closed half-space with boundary N and inward conormal qo = X(Po). Thus 

Po q~ W F ( f )  if and only if Os(sp( f ) )  extends holomorphically across N at 7r(qo). 

On the other hand, one can check that the extendibility of a holomorphic func- 

tion g across a hypersurface propagates along complex curves. To see this it is 

enough to use the submean property of the family of plurisubharmonic functions 

logl0~g I, a E I~ .  II 

ACKNOWLEDGEMENT:  I wish to thank Professor Alexander Tumanov for 

frequent and invaluable discussions. 

References 

[1] E. Bedford and J. E. Fornaess, Complex manifolds in pseudoconvex boundaries, 

Duke Mathematical Journal 48 (1981), 279-287. 

[2] A. D'Agnolo and G. Zampieri, Microlocal direct images of simple sheaves with 

applications to systems with simple characteristics, Bulletin de la Socidtd 

Mathdmatique de France 23 (1995), 101-133. 

[3] N. Hanges and F. Treves, Propagation of holomorphic extendability of CR 
functions, Mathematische Annalen 263 (1983), 157-177. 

[4] M. Kashiwara and P. Schapira, Microlocal theory of sheaves, Astdrisque 128 
(1985). 

[5] J.-M. Trdpreau, Sur la propagation des singulaxitds darts les varietds CR, Bulletin 
de la Socidtd Mathdmatique de France 118 (1990), 129-140. 

[6] J.-M. Tr~preau, Systbmes diffdrentiels h caractdristiques simples et structures 

rdelles-complexes (d'aprbs Baouendi-TYbves et Sato-Kashiwara-Kawa]), Sdminaire 

Bourbaki 595 (1981-82). 

[7] A. Tumanov, Connections and propagation of analyticity for CR functions, Duke 

Mathematical Journal 73 (1994), 1-24. 

[8] A. Tumanov, On the propagation of extendibility of CR functions, in Complex 

Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel- 

Dekker, 1995, pp. 479-498. 

[9] G. Zampieri, Extension of submanifolds of C n preserving the number of negative 
eigenvalues, Preprint, 1995. 



188 G. ZAMPIERI Isr. J. Math. 

[1O] G. ZampierL The Andreot t i -Grauer t  vanishing theorem for dihedrons o f  C ~ , 

Journal of Mathematical Sciences of the University of Tokyo 2 (1995), 233-246. 


