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ABSTRACT
For a “generic” submanifold S of a complex manifold X, we show that
there exists a hypersurface M O S which has the same number of neg-
ative (or positive) Levi-eigenvalues as S at one prescribed conormal (cf.
also [9]). When rankLg is constant, then M may be found such that Las
and Lg have the same number of negative eigenvalues at any common
conormal. Assuming the existence of a hypersurface M with the above
property, we then discuss the link between complex submanifolds of S
whose tangent plane belongs to the null-space of the Levi-form Lg of S (of
all complex submanifolds when Lg is semi-definite), and complex subman-
ifolds of T§X . As an application we give a simple result on propagation

of microanalyticity for CR-hyperfunctions along complex, Lg-null, curves

(cf. [3]).

Let X be a complex manifold of dimension n, S a real C2-submanifold of X of
codimension [, T* X the cotangent bundle to X, T¢X the conormal bundle to S
in X. Let Lg(p),p € T§X(= T¢X ~{0}), be the Levi form of S with respect to p
(cf. [5]), and denote by ss“’o(p) the numbers of respectively positive, negative,
and null eigenvalues of Lg(p).

THEOREM 1: Assume that S is generic (i.e. TS + +/—1TS = TX), and fix
Do € T§X . Then there exists a hypersurface M such that M D S, TJ’(JX 3 Po,

and moreover

(1) SX/[(po) = SE(;Do)-
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Proof:  'We choose local coordinates (z,¢) € T*X, and, for p, = (w,; (o), suppose
Co real. We write [|C]| = (3, (%)% (for the determination of the square root which
is positive for real ¢), fix t € R*, and define a contact transformation x = x¢ by:

)
X: (2:€) = (z—t——;
(¢ T
(where we suppose e.g. >, (? ¢ R™). We have, for a hypersurface ScX,
(2) X(T5X) = TiX.

We shall use the notations T€S = T'S N /=175, Ag = TT§X and similarly for
S. Since
Ker Lg & AsNV=1)g it /\g N+ —1/\5 5 KerLg,
7|" XI 1rl

and since dim(7TCS) = dim(TCS) + (I - 1), then rank(Lg) = rank(Lg) + (I — 1).
It follows, for ¢ small enough, that

(3) sz =s5(@+U-1)  (g=x(p))
We note that we have an identification T5X = X \ § given by

<
il

provided that z is close to S and |(| is small. We denote by h the projection

(w; ¢) = w —[¢]

X — 8,z — w. We also remark that we have
A5 N V=1)g = {(u;v): v = v(u) = 88ru — dru with u € Ker Lg},

and similarly for Ag N v/=1Az. Write p, = (wo; (o), go(= X(Po)) = (20} o) With
¢ € R™, |¢,| = 1. Let us define a linear transformation on C* by

q)ti Ur—u— t(v(u) - (o(COa ’U(U)))

The correspondence x;(po): As(po) NV —1As(po) = Az(go) NV —1A35(q,) induces
a correspondence ®;: Ker Lg(w,) — Ker L 5(20). We denote by g: T, X — S the
projection along the normal to S at z,, and write R = g(®,(T},S)). We have

TER D KerLg(z,), T: R = ®:(Tyu,S).
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Thus we may find a decomposition T;Co S= Tfn R® N such that
(4) Lg(z)(t,v)=0 VueTER, Vve N.

We take now a hypersurface M which intersects S along R with order of contact
2 and with the property that, if M* and S* are the closed half-spaces with
boundary M, S and inward conormal g,, then M+ C S*+. This implies

(5) x‘I(TXZX) =TyX for a hypersurface M D S.
We have
(6) Lyz(20)(@,v) =0 YueT°R, VweN.

This follows immediately from (4) if we notice that, since MnS =R, and
Ty, X|r =T} X|g, then
LM(Z)(Q—" ~)ITC]\}] = LS(Z)('&, ')'TCS‘ Vz € R.

We also notice that Ly (2)|rcg = Lg(2)|reg ~ Ls(z) (for small t), and that,
if T$X,, is identified with a totally real plane N’ C T, X (by the Euclidean
structure of T,, X®), then

Ly(20)(%,v) < —ct™Yv|* Vve N'®V/-1N".
Note also that in the decomposition Tfo S = Tg R @ N which gives rise to (6),
N can be taken close to N’ @& /=IN’ (for ¢ small). It follows that
(7) sy(20) = 55(po) + (1=1), 57, (20) = 55 (po).

(Here M being a hypersurface, we write s;;j’+(zo) instead of s;{"(po).) On the

other hand, from
KerLM f’— )‘M N \/“1)‘1\7[ x;jl A NV =1y f? Ker Ly,

we get
83 (Po) = 87 (20) — (I = 1) = s5(po),
si1(po) = 55, (20) + (1= 1) = s&(po) + (1~ 1). W
Note that (1) entails

(8) Ker Ls(po) C Ker Lps(po).
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Remark 2: Let sg(p) = b for any p in a neighborhood of p, on T $X. We tried
to prove the existence of a hypersurface M containing S and verifying s;;(p) = b
Vp e TIT,X (in particular the existence of M pseudoconvex in case sg(p) = 0 Vp).
But we do not know the answer to this question yet.

THEOREM 3: Let S be generic of class C® and rankLs(p) = const Vp € TS*X at
Do- Then there exists M D S such that

(9) syp) =s5(po) VYpES Xy Ty X.

Proof:  We transform x(T$X) = Tz X with x = xt,S = S; as in Theorem 1.
Our hypothesis is then equivalent to assuming that Lz(z) has constant rank Vz.
Thus each § = S, is foliated by the complex integral leaves of Ker L. (For this
we require S of class C3.) It follows that X ™ S itself is foliated by the integral
leaves of Ker Lg for all values of the parameter t. We replace R = g(®:(T,,S))
by f~'f(R) where f: § — L (L C S transversal to Ker L¢(z,)) is the projection
along the integral leaves of Ker Lg. We still have

TERDO KerLg(2) VzeR

Then the line of the proof is the same as in Theorem 1. |

Remark 4: Assume that there exists a hypersurface M which contains S and
such that

(10) Ker Ls(p) C Ker Lys(p) Vp € S xpr Ty X, p close to po.

(As we have already noticed in (8), this happens e.g. when sy, (p) = s5(p)¥p.)
Then for any equation r = 0 for M and for any complex ¥ C S such that
T.v C Ker Ls(p)Vp = 0r(z),Vz € v, we have

is complex.
-

T
0,,r
To prove this, we let p, = (1,0,...,0), take an orthonormal system (e;) in C",
assume 7y = @;;n_ 441 Cei, and put wf = 0,,re; — 8,,7e;. Then for any fixed j,

('wf)izl,,,_,n#j is a basis for T M. It follows, Vh > n — d + 1, that

97\ _ (o, — (05, 0,7 r -2
a0 (55) = 0000 = @2 0u) )

= (80r(w}, &) (8;,7) > = 0.

The above remark has a valuable improvement:
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THEOREM 5: Let S be generic, assume (10), and also suppose
(12) sg(p) =const Vp€ T:X at p,.

Let v be a complex submanifold of S such that

(13) T,y CKerLg(p) Vze€n, Vpe (T§X)Z at po.

Then there exists a unique r, with r|g = 0,0r(2,) = p, such that dr|, is complex.

Proof:  Existence: According to [6] it is possible to interchange TZX with
T} X,codimN =1, s5{(¢go) = 0(go = x(po)) by a contact transformation x. Such
a x can be defined by

(14) Zp > 2n — V-1 Z"l‘__l )\gici

for suitable (A;;). But in fact we have sy(z) = 0 Vz € N because the constancy
of s~ is invariant under contact transformation (cf. [4, ch. 11]); thus N is the
boundary of a pseudoconvex domain (with outward conormal ¢,). Let M be a
hypersurface which contains S and satisfies (10), let r = 0 be an equation for M
with 9r(z,) = p,, and define ¥ = wx(dr},); we claim that ¥ is complex. In fact

(11) holds as a consequence of (10). Moreover we have

0,10,
Oz ( 012 )

= ((82,0:,7)(02;7)(82,7) + (8, 0:,7)(=:7) (9, 7)

~

_2(32h 0:,7) (BZiT) (821‘ 7')) (8217')—3
= ((90r(wi, en))(:,7) + (90r(w], €))(8:i7) ) (8:,7)
:O,

due to (10) and (13). At this point we apply [1] (with some minor modifications
because now dim(7) is possibly > 1) and find a complex section tdr|; C Th X.

UNICITY:  Let 8r verify 99r|, = 0,0r(2,) = 0; we aim to prove that dr|, = 0.
It is not restrictive to assume that v is a disc in the complex C, -plane. Let
ry=0,72=0,...,r, =0 (I = codim(S)), be a system of independent equations
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for S, let (a;)1<i<i be a real vector-valued function such that dr = )" a;dr;, and
choose coordinates such that the matrix A: (0,,75) is non-degenerate.

Then (a;) satisfies

1<i i<t

0, (a:)ly = (a:) ((32,1/1)14_1)'7,
(15) 0., (@)l = (a)(@= AT,
(a;)(z,) = 0.
Then by the unicity of the solution to (15) we get (a;) = 0. [

Any section v* of T$X with 7y* = v (such as Jr|,) is called a lift of v to
T¢X. Thus if (10), (12) hold, then any complex manifold ¥ C S which satisfies
(13) has a unique complex lift v* in S x5 T3, X. Note that, since

4
™

(16) TET5X 5 Ker Ls(p),
then (13) is necessary for existence of a lift through any p close to p..

COROLLARY 6: Let S be generic and assume
(17) rankLgs(p) = const Vp € T;X in a neighborhood of p,.

Let v be a complex submanifold of S which satisfies (13). Then there exists
unique complex submanifold v* C T§X with mv* = v,v%* 3 p,.-

Proof:  According to Theorem 3, (10) is satisfied for a suitable M. In our
hypothesis (s* = const), (12) is also satisfied. Then Theorem 5 applies. 1

Note that when (17) holds, then the existence of a lift can be proved in an easier
X

way than by Theorem 5. In fact let us interchange T ¢X 5 THX, codimN =1,
sy = 0 by a symplectic complex homogeneous transformation x of type (14).
Thus N is a peudoconvex hypersurface with rankLy = const. But then N is
foliated by the integral leaves {I'} of Ker Ly. We then apply [1] and find a
foliation {I'*} of T4X with m(I*) = I'. This induces, via x~! and 7o x™1, a
foliation {I"*} and {I'} of T5X and S, respectively. We note now that if I'y is the
leaf through p, and I',(z = n(p)) its projection, then (13) implies ¥ C I',. Thus
if we set
v E Ty,

we get a complex lift of v to T§X .
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Remark 7: If in Theorem 5 we assume sg = 0 instead of (12), we do not need to
make the assumption T,y C Ker Lg(p)}(z = #(p))Vp. In fact if u belongs to T,7,
then Ls(p)(u,@) =0,p € T;X ,u € T,y. Therefore when Lg(p) is semidefinite,

we get Ls(p)(-, @)|rcs = 0.

Remark 8: For the sake of completeness we give the outline of the proof of the
quoted result by [1] with the suitable modifications. We assume 4 = {0} x - -+ x
C%, ¢ N with N pseudoconvex, take an equation s = 0 for N with ds = g,
(= x(po)), and write u = e, (€ T7),w! = ,,se; — 0.,5e;. We then have

Ls(z)(w,@) =0 YweTEN, Vze?d,

which implies

2w, @
(18) 9, (g%) (z):L—(s;?)ié)’V—)zo vz e

We claim that we can then find a real function u = p(2") such that
(19) 0z, ((0:,(e*s)l5) =0 Vh.
If this is true, then by setting 5* = {(z;e#(*)3s(2)); z € 7}, we get the conclusion.
Let g, = (0:dy;), and write
s =y —z1a(z",2") + O((22, . . ., 2n—a)))(|2"]) + O(I(21, 22, . - -, 2n—a)|?)-
It is immediate to check that the system (19) for real p is equivalent to the system
(200 (Bnp+ (B5,0)/(a+V=1)=0, 8.,n+(8:.0)/(a—V-1)=0),
for complex . Now the compatibility conditions of (20) are

9% . a(1+a%) ~2ad,,a0;,a=0 VYhk=n—-d+1,...,n

thlc

On the other hand, we have

Ly(w},wt) = 82 ;. 80,, 505, 5+0?° 510, s|°~ [0 zmcsazhsazls+8212h382k53218].

2121 2R Zk
If we compute Ly(w}, @w}) in S for 20 =+ = 2,_4 = 0, we get

Ly(w, w}) = 71 (82 5, a(1 + a®) — 200, 085,a) + O(|z1/*).

ZhZk

Thus the coefficient of x; must be 0 because otherwise, for some

w € Vect{w} }h=n—d+1,...n, Ls(w,®) would change sign on N.
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Example 9: If we choose M D S such that Ly (p)|pes > 0 (ie. sg(p) = 0)
Vp €S xu T';,,X but Las{p) # 0, then for a complex curve v in S we might have
no wish to find a complex lift v* in T;,,X . For example, let us consider in C®

S={r1=0,y3=201y2}, M={ys=21%+Zi22}, po=(0;dys).

Then TS = Cu where u = (0,1,2Imz;) and therefore Lg(p) = 0¥p € T4X. On
the other hand, S contains the complex curve v = {0} x C,, x {0} but T} X
cannot contain any complex v*. Otherwise this latter would satisfy

Tv* C TTy X NV-1TT} X (~ Ker Ly) =0,

which is a contradiction.
Corollary 6 says, however, that we can choose another M with any prescribed
conormal at z, = 0, so that a complex lift to T;{,,X always exists. For example,

with the preceding S and p, a good choice for M is
M = {z;y3 + (2122 + 2122) = 0}.

Let Cg)x and Bg)x be the complexes of respectively CR microfunctions and
CR hyperfunctions along S. We recall that Bg)x is defined as RT's(Ox )[l] (where
I = codimx M and Oy is the sheaf of holomorphic functions). When 5 is real
analytic, Bg|x turns out to coincide with the tangential d-complex over usual
hyperfunctions Bgjse (S = a complexification of S). Let sp: H°(r 'Bg|x) —
H®(Cs|x) be the spectral morphism, and define

WF(f) = supp(sp(f)), f€ H°(Bs)x).

WF coincides with the usual analytic wave front set in the sense e.g. of [5].
The conormal along S to the hypersurface M which satisfies (10) describes
the connection of T§X in which the propagation of microanalyticity of CR-

hyperfunctions takes place.

PROPOSITION 10: Let S be generic and satisfy (10),(12), let v be a complex
curve of S, p, a point of T§X with w(p,) = %o € 7, and suppose that T,y C
Ker Lg(p)Vp € (TgX ).. Then there exists a section dr|, of T43X with dr(z,) =
Do, such that

po & WF(f),, implies Or(z) ¢ WF(f). Vf € H°(Bsx).
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Proof: We choose an equation r = 0 for M, and consider the symplectic trans-
formation x of Theorem 5. Then 7x(dr|,) is a complex curve in the hypersurface
N, the boundary of a pseudoconvex domain. According to [4], the sections of
Cs|x are interchanged, by a quantization ®x of x, with H}\H (Ox) where Nt is
the closed half-space with boundary N and inward conormal ¢, = x(p,). Thus
Do € WE(f) if and only if ®k(sp(f)) extends holomorphically across N at 7(g,).
On the other hand, one can check that the extendibility of a holomorphic func-
tion g across a hypersurface propagates along complex curves. To see this it is
enough to use the submean property of the family of plurisubharmonic functions
log|d%gl, a € N™. 1
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